Blood vessels and neoplastic growth in the brain

Francesco Pezzella


Cancer associated angiogenesis has been regarded for many years as essential for a tumour to grow. However the discovery that some neoplasm can also grow in absence of angiogenesis has demonstrated that the relationship between cancer and blood vessels is much more complex than previously believed. These non-angiogenic tumours grow by co-opting and exploiting the pre-existing vessels. Alongside lung, liver and lymph nodes, brain is one organ where both primary and metastatic malignancy can grow in this way. Among the primary tumours of the central nervous system those from the glia have been more extensively investigated.  Anti-angiogenic treatments have been tested but the results have not kept up with the expectations, one of the reasons being the ability of these tumours to exploit the normal brain vessels. Metastatic tumours to the brain are a common clinical event among oncological patients with poor prognosis and non-angiogenic growth has been observed also in brain secondary. Initial data from literature have started to show that vascular co-option by both primary and secondary malignancy is an active process involving pathways related to cell adhesion, motility and apoptosis. Detailed understanding of this process will possibly lead to new therapeutic approaches aimed to disrupt this modality of neoplastic progression. In this review it is presented a synthesis   of our current understanding of this intriguing relationship between vessels and tumours in the brain.

Full Text:



Folkman J. What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute. 1990;82(1):4-6. Epub 1990/01/03.

Pezzella F, Gatter KC. Evidence Showing That Tumors Can Grow Without Angiogenesis and Can Switch Between Angiogenic and Nonangiogenic Phenotypes. Journal of the National Cancer Institute. 2016;108(8). Epub 2016/04/10.

Dome B, Hendrix MJ, Paku S, Tovari J, Timar J. Alternative vascularization mechanisms in cancer: Pathology and therapeutic implications. The American journal of pathology. 2007;170(1):1-15. Epub 2007/01/04.

Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, et al. Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med. 2013;2(4):427-36. Epub 2013/10/25.

Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. The American journal of pathology. 1999;155(3):739-52. Epub 1999/09/17.

Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. The American journal of pathology. 2000;156(2):361-81. Epub 2000/02/10.

Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, et al. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. The American journal of pathology. 2012;181(4):1115-25. Epub 2012/09/05.

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica. 2016;131(6):803-20. Epub 2016/05/10.

Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. The American journal of pathology. 2012;181(4):1126-41. Epub 2012/08/04.

Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. The Journal of experimental medicine. 1971;133(2):275-88. Epub 1971/02/01.

Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. Journal of the National Cancer Institute. 1972;48(2):347-56. Epub 1972/02/01.

Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL. Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer. 2000;88(11):2606-18. Epub 2000/06/22.

Vaquero J, Zurita M, Morales C, Cincu R, Oya S. Expression of vascular permeability factor in glioblastoma specimens: correlation with tumor vascular endothelial surface and peritumoral edema. Journal of neuro-oncology. 2000;49(1):49-55. Epub 2000/12/29.

Gollmer JC, Ladoux A, Gioanni J, Paquis P, Dubreuil A, Chatel M, et al. Expression of vascular endothelial growth factor-b in human astrocytoma. Neuro-oncology. 2000;2(2):80-6. Epub 2001/04/17.

Broholm H, Laursen H. Vascular endothelial growth factor (VEGF) receptor neuropilin-1's distribution in astrocytic tumors. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2004;112(4-5):257-63. Epub 2004/07/06.

Zagzag D, Friedlander DR, Dosik J, Chikramane S, Chan W, Greco MA, et al. Tenascin-C expression by angiogenic vessels in human astrocytomas and by human brain endothelial cells in vitro. Cancer research. 1996;56(1):182-9. Epub 1996/01/01.

Zagzag D, Hooper A, Friedlander DR, Chan W, Holash J, Wiegand SJ, et al. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Experimental neurology. 1999;159(2):391-400. Epub 1999/10/03.

Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Laboratory investigation; a journal of technical methods and pathology. 2006;86(12):1221-32. Epub 2006/11/01.

Kazuno M, Tokunaga T, Oshika Y, Tanaka Y, Tsugane R, Kijima H, et al. Thrombospondin-2 (TSP2) expression is inversely correlated with vascularity in glioma. Eur J Cancer. 1999;35(3):502-6. Epub 1999/08/17.

Kee HJ, Ahn KY, Choi KC, Won Song J, Heo T, Jung S, et al. Expression of brain-specific angiogenesis inhibitor 3 (BAI3) in normal brain and implications for BAI3 in ischemia-induced brain angiogenesis and malignant glioma. FEBS letters. 2004;569(1-3):307-16. Epub 2004/07/01.

Haskell H, Natarajan M, Hecker TP, Ding Q, Stewart J, Jr., Grammer JR, et al. Focal adhesion kinase is expressed in the angiogenic blood vessels of malignant astrocytic tumors in vivo and promotes capillary tube formation of brain microvascular endothelial cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9(6):2157-65. Epub 2003/06/11.

Gagner JP, Law M, Fischer I, Newcomb EW, Zagzag D. Angiogenesis in gliomas: imaging and experimental therapeutics. Brain Pathol. 2005;15(4):342-63. Epub 2006/01/05.

Dome B, Timar J, Paku S. A novel concept of glomeruloid body formation in experimental cerebral metastases. Journal of neuropathology and experimental neurology. 2003;62(6):655-61. Epub 2003/07/02.

Wesseling P, Vandersteenhoven JJ, Downey BT, Ruiter DJ, Burger PC. Cellular components of microvascular proliferation in human glial and

metastatic brain neoplasms. A light microscopic and

immunohistochemical study of formalin-fixed, routinely processed

material. Acta neuropathologica. 1993;85(5):508-14.

Rojiani AM, Dorovini-Zis K. Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study. Journal of neurosurgery. 1996;85(6):1078-84. Epub 1996/12/01.

Sundberg C, Nagy JA, Brown LF, Feng D, Eckelhoefer IA, Manseau EJ, et al. Glomeruloid Microvascular Proliferation Follows Adenoviral Vascular Permeability Factor/Vascular

Endothelial Growth Factor-164 Gene Delivery. American Journal of Pathology. 2001;158(3):1145-60.

Straume O, Akslen LA. Increased expression of VEGF-receptors (FLT-1, KDR, NRP-1) and

thrombospondin-1 is associated with glomeruloid microvascular

proliferation, an aggressive angiogenic phenotype, in malignant

melanoma. Angiogenesis. 2003;6(4):295-301.

Brem S. The role of vascular proliferation in the growth of brain tumors. Clinical neurosurgery. 1976;23:440-53. Epub 1976/01/01.

Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, et al. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Archivum immunologiae et therapiae experimentalis. 2013;61(1):25-41. Epub 2012/12/12.

Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain tumor pathology. 2011;28(1):13-24. Epub 2011/01/12.

Goldbrunner RH, Wagner S, Roosen K, Tonn JC. Models for assessment of angiogenesis in gliomas. Journal of neuro-oncology. 2000;50(1-2):53-62. Epub 2001/03/14.

Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 1999;284(5422):1994-8. Epub 1999/06/18.

Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, et al. Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Laboratory investigation; a journal of technical methods and pathology. 2000;80(6):837-49. Epub 2000/07/06.

Folkman J. Tumor angiogenesis: therapeutic implications. The New England journal of medicine. 1971;285(21):1182-6. Epub 1971/11/18.

Zhang HR, Chen FL, Xu CP, Ping YF, Wang QL, Liang ZQ, et al. Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. Journal of neuro-oncology. 2009;93(2):165-74. Epub 2008/12/05.

Yung YC, Cheshier S, Santarelli JG, Huang Z, Wagers A, Weissman I, et al. Incorporation of naive bone marrow derived cells into the vascular architecture of brain tumor. Microcirculation. 2004;11(8):699-708. Epub 2005/02/25.

Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. The Journal of clinical investigation. 2010;120(3):694-705. Epub 2010/02/25.

Machein MR, Renninger S, de Lima-Hahn E, Plate KH. Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol. 2003;13(4):582-97. Epub 2003/12/06.

Zheng PP, Hop WC, Luider TM, Sillevis Smitt PA, Kros JM. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Annals of neurology. 2007;62(1):40-8. Epub 2007/05/16.

Zhou W, Jiang Z, Xu YY, Li XG. Attention to normal brain volumes in glioblastoma radiotherapy: potential role in tumor invasion and vasculogenesis. Medical hypotheses. 2013;80(4):501-4. Epub 2013/02/05.

Boer JC, Walenkamp AM, den Dunnen WF. Recruitment of bone marrow derived cells during anti-angiogenic therapy in GBM: the potential of combination strategies. Critical reviews in oncology/hematology. 2014;92(1):38-48. Epub 2014/06/17.

Arbab AS. Activation of alternative pathways of angiogenesis and involvement of stem cells following anti-angiogenesis treatment in glioma. Histology and histopathology. 2012;27(5):549-57. Epub 2012/03/16.

Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC. Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. Journal of neurosurgery. 1994;81(6):902-9. Epub 1994/12/01.

Pezzella F, Di Bacco A, Andreola S, Nicholson AG, Pastorino U, Harris AL. Angiogenesis in primary lung cancer and lung secondaries. Eur J Cancer. 1996;32A(14):2494-500. Epub 1996/12/01.

Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, et al. Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. The American journal of pathology. 1997;151(5):1417-23. Epub 1997/11/14.

Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia. 2000;2(4):306-14. Epub 2000/09/27.

Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer research. 2001;61(18):6624-8. Epub 2001/09/18.

Winkler F, Kienast Y, Fuhrmann M, Von Baumgarten L, Burgold S, Mitteregger G, et al. Imaging glioma cell invasion in vivo reveals mechanisms of dissemination and peritumoral angiogenesis. Glia. 2009;57(12):1306-15. Epub 2009/02/05.

di Tomaso E, Snuderl M, Kamoun WS, Duda DG, Auluck PK, Fazlollahi L, et al. Glioblastoma recurrence after cediranib therapy in patients: lack of "rebound" revascularization as mode of escape. Cancer research. 2011;71(1):19-28. Epub 2011/01/05.

Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, et al. Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(35):15553-8. Epub 2010/08/13.

Montana V, Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2011;31(13):4858-67. Epub 2011/04/01.

Caspani EM, Crossley PH, Redondo-Garcia C, Martinez S. Glioblastoma: a pathogenic crosstalk between tumor cells and pericytes. PloS one. 2014;9(7):e101402. Epub 2014/07/18.

Watkins S, Robel S, Kimbrough IF, Robert SM, Ellis-Davies G, Sontheimer H. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells. Nature communications. 2014;5:4196. Epub 2014/06/20.

Sakariassen PO, Prestegarden L, Wang J, Skaftnesmo KO, Mahesparan R, Molthoff C, et al. Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(44):16466-71. Epub 2006/10/24.

Soda Y, Myskiw C, Rommel A, Verma IM. Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl). 2013;91(4):439-48. Epub 2013/03/21.

Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature reviews Cancer. 2003;3(6):411-21. Epub 2003/06/05.

El Hallani S, Boisselier B, Peglion F, Rousseau A, Colin C, Idbaih A, et al. A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain : a journal of neurology. 2010;133(Pt 4):973-82. Epub 2010/04/09.

Yue WY, Chen ZP. Does vasculogenic mimicry exist in astrocytoma? . Journal of Histochemistry and Cytochemistry. 2005;53:997-1002.

Liu XM, Zhang QP, Mu YG, Zhang XH, Sai K, Pang JC, et al. Clinical significance of vasculogenic mimicry in human gliomas. Journal of neuro-oncology. 2011;105(2):173-9. Epub 2011/05/03.

Chen YS, Chen ZP. Vasculogenic mimicry: a novel target for glioma therapy. Chinese journal of cancer. 2014;33(2):74-9. Epub 2013/07/03.

Dong J, Zhang Q, Huang Q, Chen H, Shen Y, Fei X, et al. Glioma stem cells involved in tumor tissue remodeling in a xenograft model. Journal of neurosurgery. 2010;113(2):249-60. Epub 2010/03/17.

Scully S, Francescone R, Faibish M, Bentley B, Taylor SL, Oh D, et al. Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2012;32(37):12950-60. Epub 2012/09/14.

Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468(7325):824-8. Epub 2010/11/26.

Mei X, Chen YS, Chen FR, Xi SY, Chen ZP. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro-oncology. 2017;19(8):1109-18. Epub 2017/03/25.

Preusser M, Capper D, Ilhan-Mutlu A, Berghoff AS, Birner P, Bartsch R, et al. Brain metastases: pathobiology and emerging targeted therapies. Acta neuropathologica. 2012;123(2):205-22. Epub 2012/01/04.

Hall WA, Djalilian HR, Nussbaum ES, Cho KH. Long-term survival with metastatic cancer to the brain. Med Oncol. 2000;17(4):279-86. Epub 2000/12/15.

Eichler AF, Chung E, Kodack DP, Loeffler JS, Fukumura D, Jain RK. The biology of brain metastases-translation to new therapies. Nature reviews Clinical oncology. 2011;8(6):344-56. Epub 2011/04/14.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74. Epub 2011/03/08.

Winkler F. The brain metastatic niche. J Mol Med (Berl). 2015;93(11):1213-20. Epub 2015/10/23.

Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nature medicine. 2010;16(1):116-22. Epub 2009/12/22.

Qi ST, Zhang H, Song Y, Zhang JL. Tumor cells forming sinusoids connected to vasculature are involved in hemorrhage of pineal choriocarcinoma. Journal of neuro-oncology. 2014;119(1):159-67. Epub 2014/05/23.

Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA, et al. Invasion patterns in brain metastases of solid cancers. Neuro-oncology. 2013;15(12):1664-72. Epub 2013/10/03.

Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. Journal of the National Cancer Institute. 1992;84(24):1875-87. Epub 1992/12/16.

Trivella M, Pezzella F, Pastorino U, Harris AL, Altman DG. Microvessel density as a prognostic factor in non-small-cell lung carcinoma: a meta-analysis of individual patient data. The Lancet Oncology. 2007;8(6):488-99. Epub 2007/05/22.

Salgado KB, Toscani NV, Silva LL, Hilbig A, Barbosa-Coutinho LM. Immunoexpression of endoglin in brain metastasis secondary to malignant melanoma: evaluation of angiogenesis and comparison with brain metastasis secondary to breast and lung carcinomas. Clinical & experimental metastasis. 2007;24(6):403-10. Epub 2007/06/15.

Barresi V, Branca G, Caffo M, Caltabiano R, Ieni A, Vitarelli E, et al. Immuno-expression of endoglin and smooth muscle actin in the vessels of brain metastases. Is there a rational for anti-angiogenic therapy? International journal of molecular sciences. 2014;15(4):5663-79. Epub 2014/04/05.

Berghoff AS, Ilhan-Mutlu A, Dinhof C, Magerle M, Hackl M, Widhalm G, et al. Differential role of angiogenesis and tumour cell proliferation in brain metastases according to primary tumour type: analysis of 639 cases. Neuropathology and applied neurobiology. 2015;41(2):e41-55. Epub 2014/09/27.

Jubb AM, Cesario A, Ferguson M, Congedo MT, Gatter KC, Lococo F, et al. Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. British journal of cancer. 2011;104(12):1877-81. Epub 2011/05/05.

Berghoff AS, Ilhan-Mutlu A, Wohrer A, Hackl M, Widhalm G, Hainfellner JA, et al. Prognostic significance of Ki67 proliferation index, HIF1 alpha index and microvascular density in patients with non-small cell lung cancer brain metastases. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al]. 2014;190(7):676-85. Epub 2014/03/01.

Liu Y, Carson-Walter EB, Cooper A, Winans BN, Johnson MD, Walter KA. Vascular gene expression patterns are conserved in primary and metastatic brain tumors. Journal of neuro-oncology. 2010;99(1):13-24. Epub 2010/01/12.

Ilhan-Mutlu A, Siehs C, Berghoff AS, Ricken G, Widhalm G, Wagner L, et al. Expression profiling of angiogenesis-related genes in brain metastases of lung cancer and melanoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(1):1173-82. Epub 2015/08/19.

Hu J, Bianchi F, Ferguson M, Cesario A, Margaritora S, Granone P, et al. Gene expression signature for angiogenic and nonangiogenic non-small-cell lung cancer. Oncogene. 2005;24(7):1212-9. Epub 2004/12/14.

Adighibe O, Leek RD, Fernandez-Mercado M, Hu J, Snell C, Gatter KC, et al. Why some tumours trigger neovascularisation and others don't: the story thus far. Chinese journal of cancer. 2016;35(1):18. Epub 2016/02/14.

Chen LT, Xu SD, Xu H, Zhang JF, Ning JF, Wang SF. MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol. 2012;29(3):1673-80. Epub 2011/11/05.

Leenders WP, Kusters B, Verrijp K, Maass C, Wesseling P, Heerschap A, et al. Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10(18 Pt 1):6222-30. Epub 2004/09/28.

Bugyik E, Dezso K, Reiniger L, Laszlo V, Tovari J, Timar J, et al. Lack of angiogenesis in experimental brain metastases. Journal of neuropathology and experimental neurology. 2011;70(11):979-91. Epub 2011/10/18.

Ito T, Kitamura H, Nakamura N, Kameda Y, Kanisawa M. A comparative study of vascular proliferation in brain metastasis of lung carcinomas. Virchows Archiv A, Pathological anatomy and histopathology. 1993;423(1):13-7. Epub 1993/01/01.

Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. Journal of neuropathology and experimental neurology. 1995;54(3):304-10. Epub 1995/05/01.

Plate KH, Breier G, Weich HA, Mennel HD, Risau W. Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. International journal of cancer. 1994;59(4):520-9. Epub 1994/11/15.

Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM, et al. Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer research. 2000;60(17):4959-67. Epub 2000/09/15.

JuanYin J, Tracy K, Zhang L, Munasinghe J, Shapiro E, Koretsky A, et al. Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clinical & experimental metastasis. 2009;26(5):403-14. Epub 2009/03/12.

Kusters B, Leenders WP, Wesseling P, Smits D, Verrijp K, Ruiter DJ, et al. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer research. 2002;62(2):341-5. Epub 2002/01/26.

Simonsen TG, Gaustad JV, Rofstad EK. Intertumor heterogeneity in vascularity and invasiveness of artificial melanoma brain metastases. Journal of experimental & clinical cancer research : CR. 2015;34(1):150. Epub 2015/12/17.

Lee HT, Xue J, Chou PC, Zhou A, Yang P, Conrad CA, et al. Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells. Oncotarget. 2015;6(12):10016-29. Epub 2015/04/18.

Lorger M, Krueger JS, O'Neal M, Staflin K, Felding-Habermann B. Activation of tumor cell integrin alphavbeta3 controls angiogenesis and metastatic growth in the brain. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(26):10666-71. Epub 2009/06/23.

Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH-F, Lee DJ, et al. Serpins Promote Cancer Cell Survival and Vascular Co-option in Brain Metastasis. Cell. 2014;156(5):1002-16.

Pezzella F, Winkler F. Tumors and Blood Vessel Interactions: A Changing Hallmark of Cancer. In: Boffetta P, Bosman F, Colditz GA, Hainaut P, La Vecchia C, Pfeifer G, et al., editors. Encyclopedia of Cancer. Third Edition ed: Elsevier; In press.



  • There are currently no refbacks.
Copyright 2016. All rights reserved.